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ABSTRACT

A rigorous treatment of CMG gimbal angle control
is presented in the framework of an optimization problem.
Two algorithms for control are developed and implementation
questions are discussed.

The CMG control law being developed by MSFC for
the Skylab is explained in terms of the basic components of
an optimal solution. Further, the gimbal angle trajectories
of the MSFC control law appears to be reproducible by a
proper choice of the penalty function in the optimization
problem.

Savings in computer memory storage can be achieved
by employing one of the control laws developed here. IBM,
Huntsville, has shown that a saving of 224 words could be
realized. However, with the ATM digital computer, execution
time. would be increased. Should the need for additional
memory become compelling, consideration can be given to
replacing the MSFC law by one presented here.
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Introduction

The design of control laws for active control-

moment-gyro (CMG) systems divides naturally into two parts -

(1) specifying the desired control torque Td as a function of

the attitude and rate error of the spacecraft and (2) cont
trolling the rate of change of CMG spin angular momentum H

such that the actual control torque T2 equals the desired Td.
This memorandum deals with the second problem. The first has
been investigated in Ref. 1, which contains much historical
background.

For any physical arrangement of CMGs, H can be

written as*

0= c(sa)éa =72 - mxH(Sa)

a

where, for a system of N two degrees-of-freedom CMGs, § is
a 2N x 1 vector of actual gimbal angles, c(s?) = {aHi/aGaj}**

is a 3 x 2N matrix whose elements are trigonometric functions
of the gimbal angles, and v is the spacecraft angular velocity.
The magnitude of the spin angular momentum of each CMG is
assumed to be the same and each term in this equatioun 1s a
torque per unit of spin angular momentum of one CMG.

*The effect of non-spin angular momentum terms are negli-

gible [Ref. 1], and therefore are not included.

**Hi(i=1,2,3) and 6§(j=1,...,2N) are the components of

the vectors H and Ga, respectively.



A servomechanism on each gimbal axis controls the
actual gimbal angle rates 82 by tracking commanded gimbal

angle rates §€ generated in the control computer. The re-
sponse tlme of these servomechanisms is sufficiently small

so that §2 tracks §€ very closely, close enough in fact that
the first step is to replace 82 by §€ in the equation for H.

= c(sa)&c =72 - wa(Ga)

In what follows the superscripts a and ¢ on § will be suppress-

ed, but it is to be understood that in the control computer §C
is calculated with the matrix C and the vector H determined from

actual gimbal angles (or sines and cosines of the actual gimbal
angles).

Implementation of CMG control is likely, as on the
Skylab, to employ a digital computer. A generic block diagram
for such a system is shown on Figure 1. At time t = Ty

sample values of attitude and rate error are used to calculate

a sample yalue of the desired CMG torque Td from which a sample
value of § is calculated. This § is held constant until the
next sampling time and is applied as input to the servomecha-
nisms that control gimbal angle. rates.

The purpose of this report is to develop, in a uni-
fied and systematic way, the underlylng principles for determ-
ining the commanded rates 8, in the framework of an optimization
problem. Computational algorithms for obtaining such rates are
derived and the computational problems involved in implementa-
tion are discussed. The Marshall Space Flight Center (MSFC)
control law being implemented on the Skylab is also explained
in terms of the principles developed here.

I. Mathematical Statement of the Problem

For the sake of definiteness, we shall confine our-
selves in this paper to the case of 3 CMGs (N=3). In this
event, the gimbal angle vector § is a 6-vector and is given by

§' = (81701'821a2133la3)

where the By and a; represent the inner and outer gimbal angles,
respectively.




The momentum vector, H, is given by H = hl + h2 + h3,
where hi is the unit momentum of each gyro, and in the case of
. Skylab (Ref. 2): |

. cosulcosel -51n82 -51na3cosB3
. h1 = -s:.nalcosBl ’ h2= coszxzcoss2 ’ h3 = —51n83
-sinBl —51na2c0582 cosa3cosB3

Hence, the 3 x6 matrix C(S§) is given by

-cosB : 0 -cosa.,cosB

2 | 3 3

- » l- »
cosa151nsl: 51na1COSB E :
I
1_ : | B - \
: cosa251n52= 51na2c0582: coss3 : 0
! |
| |

SlnaBSlnB 3
_ . : 1 _ :
C = 31na151n81= COSalcosB
i
-cosBl : 0

1 y
I
1
1l
. . | I . .
51na251n82:-005a2c0582:-c05a351n83 —51na3coss3

We can now formulate the problem mathematically:

Given 6(t), the CMGs deliver a torque, Ta, according to the
relation:

c(s(t))é(t) + w(t) x H(G(t)) =72 (1)

We require the controller to act in such a way so that both §
and Td are constant in each sampling interval [tk,tk+1]; i.e.,
we seek a §(t) which satisfies:

C(G(t)) Es(tk)+ wa(S(t)) = 'rg , for tin [t.,t, 1 (2)

. where {Tg} is a sequence of constant vectors. Furthermore, we

wish to minimize some penalty function J(§(t)) subject to the
constraint Eq. (2).

The role of the penalty function is two-fold. First,
because of the fact that Eq. (2) is a system of 3 equations in
6 unknowns, minimizing the functional J enables us to determine
a specific (although not necessarily unique) solution §. Second,




the minimization also enables us to incorporate certain desip-
able properties into the solution §, such as smoothness of
trajectory, avoidance of gimbal stops, etc. These properties
will be discussed further below.

The constraint relation given by Eq. (2) cannot, in
general, be satisfied. For, if 6 is constant in the interval
[tk tk+l]' then §(t) = G(t ) + G(tk)(t ty ), and the left-hand-

side of Eq. (2) will be varying with t1me while the right-hand-
side is constant.

In Section II, we give two approaches for solving the
optimization problem approx1mate1y. In each, we shall replace
the constraint condition (Eq. (2)) by another equation which is
realizable. 1In the first approach, we shall demand that the
constraint be satisfied only at the sampllng points. In the
second, we require that an integrated version of Eq. (2) be
satisfied at the sampling points. For both, we shall give a
description along with an analytical expression for their errors.
Algorithms for the computation of angles and rates are derived
for the general class of quadratic penalty functions. Some sta-
bility questions are also addressed. Specific case studies are
then presented, (including duplication of the gimbal angle tra-
jectories obtained at MSFC) showing some of the salient features
of each of these approaches. Their relative merits are also
compared.

II. Two Approaches to Solving the Minimization Problem

A. Torque Matching at the Sampling Times

At the sampling time t = tk’ we have the current
gimbal angles Gk’ spacecraft rates Wy r the momentum vector H(Gk)
= Hk' the matrix C(Gk) z Ck and the desired torque Tg. We seek
a set of gimbal angles 6k+l which minimizes a cost function
J(6k+l,6k), (which may depend on Gk’ as well as on 6k+l)’ subject
to the constraint

1 _ . a
KECk( K+l " k)+“’ B =T o (3)

where At = tk+l - tk. We assume for k = 0, 60 is defined and
satisfies suitable predetermined properties.
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In this fashion, a sequence {Gk} is determined. Next,
define the sequence {3k} by

s _ "k+l
5k = TE (4)

Finally we define the vector function §(t) for t in the interval
[ty r i1l bY

§(t) = & + ék(t-tk) (5)

Should the gimbal angles, §, evolve according to this

trajectory, the actual torque, Ta, produced in the interval
[tk’tk+l] would be, according to Eg. (1):

73 = c(§(t))ék + w(t) x H(t)

Thus,

T =T =T when £t = t

but, in general,

a a
™ # T when tk < t < tk+1
One can obtain an expression for the mean, or average,

error of 2 over the interval [tk,tk+1]. The mean error is

Y+l
(Ta—Tg)dr = Z}Ef KC(G(T))-Ck>(§k + <w(T)XH(6(T)) - kaHk>]d'r (6)
%

This is a vector equation. If we examine a typical component,

say the iEE, and apply the mean value theorem of integral cal-
culus, we obtain
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Y+l .
KIEL (Ta-Tg) dr (c(sk+ékek) - ck)ék

(7)
+ (w(tk+ek)x H(6k+6ksk) - kaHk)
for some €x such that 0 < € < At.

In the case where the penalty function J is a gquad-
ratic in 5k+1’ the obtained algorithms for 5k+1 are easily

implemented on the digital computer. For the sake of brevity,
let us first introduce the notation

6k=6k-6

for some constant reference vector §. (For example, in the
case of the Skylab CMGs, § = (0,%/4,0,7n/4,0,1/4).)

Suppose now, J has the form
1+ _.= Y = =
J(6k+l’6k) = 7(5k+1'55k) Q(Gk)(5k+l-55k) (8)

where s is a parameter, 0 < s < 1, and Q is a positive definite
matrix, which may depend on the current angles Gk. The motiva-

tion for writing a quadratic J in this form is that

Sp41 ~ SO = (1=s)§p 4 + s(5k+1—6k) = (1=s)8y 1y * s(5k+1'5k>

which is a linear combination of angles (Ek+l) and rates
(6k+1-6k), and s is a measure of the rate mixture. Q can be

thought of as a weighting matrix. (An example of where unequal
weights may be used is seen in the case of the Skylab. There
the angles B; traverse between approximately #n/2 while the ey

traverse between *m. In order to equalize this difference in
dynamic ranges, we can take Q to be a diagonal matrix with the
diagonal elements to be (1, .25, 1, .25, 1, .25).) Minimizing
J in this form is equivalent to minimizing the general quadra-
tic form
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J =38 Ql(ak)6k+l toOpe1 (8

for suitable non-singular matrices Q1 and Q2 and vector v.

The problem, for the penalty function given in Eq.
(8), can be stated as: given the current angles Gk' rates Wy s

momentum Hk, the weighting matrix Qk = Q(Gk), the paramccer s,

and the desired torque Tg, find §k+l which minimizes (Eq. (8))

- 1l(3 = Yo. (5 = )
J =3 (6k+1 sck) Qk(6k+l-56k

subject to the constraint

1 = md _ - mC
K loprrse) = o - e = 5

, An application of the Lagrange multiplier method
yields the formula

-1
e -1 -1 P
6k+1 - Gk = (1 S)[ék Ck(Cka Ck) Ck %]Sk
' (10)

-1
- ' - 1
+ leck(ckale) Tt

- ]
This formula is valid if and only if the matrix (CkQ 1Ck) is non-
singular for each k. If the-Qk are positive definite, then the
- ]
Ckale are non-singular if and only if the momentum vectors of

the CMGs are not colinear. This-assertion is prpved in ap»

mwoanAdl e 1
Hcl&u.‘.‘\ - .

Equation (10) yields, at once, the gimbal angle rates
to be commanded for the time interval [tk,tk+l],and, therefore,
the optimal angles req tO be attained at t = trl”

A natural "stability" question for this kind of
system is: What happens to the gimbal angles when the desired
torque becomes zero at a certain time tN and remains zero there-~

after? This is discussed in Appendix 3.



We now discuss some typical case studies using this
approach. Computer runs were made with a program based on the
algorithm given by Eq. (10), with § = (0,r/4,0,7/4,0,7/4).
The case studies included both "open-loop" and “closed-loop"

models. In the first case, the driving torqgue Td is assumed
to be just the gravity-gradient torque. 1In the closed-loop

case, the torgue 1s obtained, through feedback, by computing
the attituae ana rate errors. )

l. Open-loop Runs

In these runs, we have assumed w = 0 for all t. Thus,
the average error of the torque over the interval [tk'tk+l]’ by

qu (6) [4 iS

tk+l
-Alt.f (C(G(r)) - ck)&kdr

x

and the total error up to time tk+1 is

trt1 k+1 k+1
C(G(T))der-z CjGjAt = Hk‘l'l - Z CjGjAt (11)
0 35=0 =0

We also take the Skylab solar inertial attitude, with the solar
elevation angle, B8, equal to 30°, and starting at 45° before
orbital noon. The matrix Q is taken to be the identity matrix,
and 50 is taken to be the zero vector.

Figure 2 compares the gimbal angles obtained for
s =0 (i.e., no rate term in J) and At = .2 sec. and At = 1 sec.
Figure 3 represents the total errors in torgue for these two
cases. Notice that as At becomes smaller, the oscillations be-
come smaller in amplitude and greater in frequency. Of greater
importance, note that the total error in torque begins to be
significant in the vicinity of 400 seconds into the orbit and
grows larger as time goes on. This error seems independent of
the size of the sampling intervals. It turns out that the
matrices involved (in Egq. (10)) become very sensitive to small
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changes in § near t = 400 sec., the time near which the oscil-
lations first appear. These phenomena occurred in other cases
and for other values of At which are not included in this re-
port.

If we now start adding the rate term in the penalty
function by increasing s, we find that the oscillations start
to disappear, and the total errors in torque decrease dramati-
cally. Figures 4 and 5 compare runs for s = .5 and .75 with
At = .2 sec. We note also that there is a range of values
of s (between .5 and .9) where the gimbal angles obtained are
not greatly changed with changes in s. These results agree

quite well with those obtained by the second approach to be des-
cribed below.

2. Closed-loop Runs

In these runs the desired torque is a linear function
of the attitude and rate errors of the spacecraft, as it will
be on the Skylab.

In order to cause the momentum vector to swing over
its maximum range, the gravity gradient torque on the Skylab
was artificially scaled up. The scale factors used were

8 Torque Factor
o 2.06

+£30° 1.73

+45° 1.63

+60° 1.66

where 8 is the solar elevation angle from the orbital plane.

Runs were made using three control laws: the torgue
matching control law given by Eg. (10), the MSFC control law,
and another version of the torque matching law. This last ver-
sion produced gimbal angle trajectories nearly identical with
those of the MSFC control law.

In the closed-loop case, the torque matching law dis-
played sharply varying. jagged gimbal angle trajectories for
At = ,2 sec. (the Skylab value) and s < .8. A set of trajec-
tories for s = .y and 8 = .2 1s shown in Figure 6. ‘This il-
lustrates, oncde more, that increasing the rate term mixture in
the penalty function smoothes out the gimbal angle trajectories.
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component of the commanded gimbal angle rates. The value of K

- 10 -

The MSFC control law is conceptually of the torgue
matching type. It also produces jagged gimbal angle trajectories
unless a gain factor associated with it is set low. This factor
plays a similar role to (l-s) in Eg. (10), as we will now show.

Notice that the first term on the right side of Eq.
(10) produces zero torque (i.e., it is a vector in the null space
of Ck). The second term produces the torgue. This is just an ex-

ample of the fact that the solution to a consistent set of linear
equations (i.e., Eg. (9)) consists of a vector from the null space
plus a particular solution.

Now, the MSFC control law (Ref. 2) is the sum of two
parts, the "rotation law" and the "steering law". The rotation

law generates gimbal angle rates, say GR, that produce no torgue.
Hence, R is in the null space of Ck. The steering law produces

gimbal angle rates, say 33, that provide the desired torque. Thus,
38 is a particular solution of Eg. (9). Associated with the rota-

tion law is a scale factor called KR (Ref. 2); that is, the total
RéR + és. We see that the factor KR plays
the same role as (l1-s) in Eq. (10) by scaling down the null space

R
given in Ref. 2 is 0.25, which was determined empirically in simu-
lations at MSFC. The tendency for jagged gimbal angle trajecto-
ries was found to increase with increasing Kpr just as this tend-

gimbal angle rate is K

ency increased with increasing (l-s) using the torque matching
algorithm given by Eg. (10). This fact is displayed in Figure 7
by the discontinuities in the gimbal angle trajectories.

Since the MSFC law has a simalar structure to Eg. (10)
(i.e., the sum of a null solution and a particular solution) a
guestion that comes to mind is, "Can the MSFC law be derived as
a soliution to an optimization problem?"” Our attempt to do soO
proved too formidable to pursue at this time. The next question
then is: Can a penalty function, (Eq. (8)), be chosen such that
the resulting algorithm produces gimbal angle trajectories iden-
tical, or very similar, to those of the MSFC law? The answer to
this question is yes.

If the penalty function used is

J = %(§k+l--6-k )'Ql(€k+l-§k) + ‘1'5)(3k+1'3k )'Qz"
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the solution to the optimization problem is
- 1 -l
S+1 ~ S = (1-8)1Qy ck(ckol k) Cx = IT|Q179yv

-1
' -1.' ! c
+Q Ck( CxQ;C k) Tpat

The elements of Ql' Qz, and v are chosen using the following
rationale. Let Q, and Q2 be diagonal, then J can be written as

6 6
1 2
=3 Z ( k+1” k) + (1-s) Z diV 1( k+1” k)
i=1 i=1
Let us now define Yy = flékl, where the fi's are chosen such

that the dynamic ranges of all the Yritg are equal. For the
Skylab CMGs we can use fi =1, i=1, 3, 5; and £; = .5,

i =2, 4, 6; since the outer gimbal angles have a range twice
n
ki
where n is an odd integer. With these definitions, J becomes

that of the inner gimbal angles. Finally, choose v; = $

6
SEDIE 2
= d3 2( (k+1)i Ykl)
i=1 l
Yn
ki
+ (1-s) Z: 973 EHIE(Y(k+1)i-Yki)
i i

Since all the Yei's have the same dynamic range, we
choose

2 _ gh+l
93 = £ dp; = &5
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Thus we have for the Skylab

Q = diag(l, .25, 1, .25, 1, .25)

01102 = diag(l, sl oy, 5Tl g, .5“'1)
and
v _[{zsh =N =

By choosing n = 5 (the value of the exponent used in
the MSFC rotation law) and (l1-s) = .2, we obtain, using Eq. (10a),
gimbal angle trajectories nearly identical with those of the MSFC
control law.

Thus, the algorithms derived here, using the torque
matching approach, can duplicate the results using the MSFC law.
Whether this approach should be used instead of the MSFC approach
depends on their relative ease of implementation. This is dis-
cussed in the concluding remarks.

These case studies suggest that at least some rate con-
trol (i.e., s > 0) is essential to obtain smoothly evolving gimbal
angles.

B. "Momentum Matching" at the Sampling Points

In the method just described, we matched the actual

torque, T = § + wxH, with the desired torque Td at the sampling
times. Here we will attempt to satisfy the integrated form of
the constraint (Eq. (2)), and work with the momentum vector
H(§(t)) instead.

Given Spr Wie Ti, we seek a sequence of gimbal angles
)

constraint

k+1 which minimizes a cost function J(°k+l'5k)' subject to the

k

k
H(6k+1)= Zo T‘jiAt - Z wy X H(sj)At (12)
j=

:=0
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We assume that for k = 0, 60 is defined and satisfies suitable
pre-determined properties.

As in the first approach, we can, in this fashion,
generate a sequence {Gk}, and, therefore, a sequence {Gk} by

Similarly, we define the function §(t) on the interval [tk,t

k+1)
by

§(t) = ék + Gk(t—tkl)

Should the gimbal angles, §, evolve according to this
trajectory, the actual torque, Ta, produced in the interval
[tk,£k+l] would be, according to Eg. (1)

T = c(s(t))é(t) + w(t) x H(a(t)) =H + wxH

Thus,

t t

f‘l‘adr = H(G(t)) +f w(t) x H(G(r))dr - H(ao)
0 0

The total error of T® over the interval [tk’tk+1]’

ftk"l(ma_Td)dT = 1(eiy) - 55k )

1
+ wxHdr - TgAt

N
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From Eq. (12), we have
H(G )— H(6 )= TdAt - w, xH At
k+1 k k k" k
This yields the error
el e
a d) _ 1 -
(T -7 Jdr = it (mxH wkak)dr

ty tx

This is precisely the second term of the torque error obtained
in the previous approach (Eg. (6)).

1
it

An advantage of this approach is now readily apparent:
If the spacecraft is held in an inertial attitude, which is in-
deed what is desired in the Skylab, then w = 0 for all t. This
means that the total error over [tk’tk+l]’ and, therefore, the

total error up to any sampling time tyr is zero. Theoretically,

at least, then this control approach, for w = 0, produces a
torque which, on average, is the same as the desired torque up
to any time tk. This compares with the possibility of accumu-

lating errors as in the first approach.
On the other hand, in the case of a guadratic cost
function J(Gk+l,6k), this approach is not as simple to execute

as is the first. In the previous case, given the angle vec-
tor Gk' a one-time application of Eg. (10) yields the next

vector 6k+1' In the present case, however, iterations may be
required.

for some constant reference vector 8. Let J be the same guad-
ratic cost function as before. We seek to minimize

J = %’(gk+l-sgk)'Q(Gk)<§£+1_sgk) (8)
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subject to constraint

k

H(5k+l) = Z(Tg - ijH(Gj))At

3=0

k
E: T?At (12)
j=0

An application of the Lagrange multiplier method
yields a system of 9 equations in 9 unknowns:

k
C
j=0

Q(sk)(3k+l-s§k) + C;A = 0

where ) is the 3 x 1 vector of Lagrange multipliers.

(13)

We shall solve Eg. (13) for ¢

of iterations. [A brief recapitulation of that method is given
in Appendix 2.] Newton's method generally is unwieldy for high-
er dimensional systems, primarily because it requires the inver-
sion of the Jacobian matrix, M, which in our case is 9 x 9:

)
k+1 by Newton's method

el s

X6 X

M= |—m—mmn bo-g2o
Q+D : C

gx61! 6x3

where D is the 6 x 6 matrix with entries di" which are partial
derivatives of the iEE component of the vector C'(G)A with re-

.+h
spect to the j— component of §. However,

in this case, Newton's
method is easily executed.

First, because of the simple block form for M, M-l
can be obtained analytically, whenever it exists’, as
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: (e+>) "1 -
-1 S1a 7L -1 .1 -1 "L -1
(Q+D) “C (c(Q+D) “C )Sxai(Q+D) C (c(Q+D) “C) C(Q+D)6x6
]
= |\ ot - (14)
-1 1 -1 -1
-(C(Q+D) “C ) ) (C(Q+D) "C') C(Q+D)
) 3)(3' Xg
Second, because of the special nature of the matrix C(§) (where
the first two components of § appear only in the first two
columns of C, the third and fourth components of é§ appear only
in the third and fourth columns of C, and so on), the matrix
Q + D has the simple block form
Gy 0 0
Q+D 0 G2 0
0 0 G3
where each Gi is 2 x 2. Therefore,(Q-i-D)-l is simply
-1
Gy 0 0
@)t =| 0o & o
-1
0 0 G'3
whenever the Gll exist.

Because of these simplifying properties, it is possi-
ble to obtain an explicit analytic formula for the iterative
s¢heme. In fact, let Tj be the jEE approximation for the angle
Ek+l being sought. Then, an application of Eq. (A2.2) of Appendix
2 together with Eq. (14), yields

i+l - Tj =

()73 (15) eslasem) e (£, woe - wr)

Yj - (
Qj+nj)‘l c;(cj(Qj+Dj)'lc;) Cj(Qj+Dj)‘1 - %]QJ(Y -sT )

(15)

*

DA e vae R LR T e i Wl
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-1
ager = -(c5(05#05) 7 ey) og(oyvny ) H(75s%)

_l k
-1 E: c
- (C. .+D. c! T"At - H.
( J(QJ J) J ( m t J)
m=0

Thus, the difficulties which are generally associated with
Newton's method for solving higher dimensional systems dis-
appear in the present case.

(15)

We observe here that Egs. (15) actually contain, as
a special case, Eg. (10) used in the previous approach if we
set the matrix D equal to zero, set Yo = sk, and perform only

one iteration to obtain each E£+l' In that case, the -first -

equation of Egs. (15) is precisely of the form of Eg. (10),
if we recognize that

k k

Z. st - H(Y0)= Z st - H(dk)

n=0 m=0
k k-1
c c - mC
= Z TmAt Z ’I‘mAt TkAt
m=0 n=0

Setting D = 0 is equivalent to assuming that the function H
varies linearly in each sampling interval. Thus, in that
sense, the first approach is a linearized version of the pre-
sent one.
. |

Equation (15) is valid whenever (Q+D) * and
(c(a+p)~tc') ™! exist. If (0+D)”! exists, (c(o+D) i)™l exists
if and only if the three gyro momentum vectors are not colinear
(See Appendix 1.) If (Q+D) is singular at some sample time t,,

then so is the Jacobian matrix M, and Newton's method fails at
that point. In the actual program that was used, whenever this
happened, we merely employed Eg. (10) to obtain the next 6k+l'

In the case where w = 0, s = 0, and Q = constant matrix,

this approach also possesses, theoretically at least, the desir-
able property that the gimbal angles remain fixed when the
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desired torgue becomes zero at a certain time tN and stays

zero for all time thereafter. For, if w = 0, and if Tﬁ =0
for all k > N, then the constraint Eq. (12) for 6N+1 becomes

(N+l) Z T At

Since s = 0, the minimizing problem given by Egs. (8) and (12)

becomes: find 6N+1 which minimizes
— —
J = Sn+1 Vner
such that
N-1
- d
H(6N+l) = Z 58t
=0
But this is the same problem as the one which defines e
Hence, if we use GN as a first guess to find 6N+l' we must
have 6N+l =68y. In fact, we must have, by repetition of this
argument, &, = GN for all k > N.

We now discuss some typical case studies using this
approach. Computer runs were made with a program based on
Egs. (15) and (10). That is, given a gimbal angle vector Gk

and a desired torque Tﬁ, we generate a new angle vector using

+haAa mmitd= 3w T {1NnY TF an- +=T 3 new ancle vwvagtor
st et a-LAuH.LcJ. TOUTCLIINE L4e Vvav/ e wild new anga [S{ex ey

the momentum constraint Eq. (12) is satisfied, then this
vector is our desired solution 6k+l' If not, then iterations

are performed using Eg. (15), with the angle vector generated
in the first step by Eq. (10) being a first "guess." The use
of Eq. (10) to provide the first approximation, thus, has the
advantage of reducing computatlon time. It also has the
added advantage of continuing in time if at a certain time
k' the Jacobian matrix becomes singular, and Newton's method

fails.
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In the results presented here, we have considered
only the "open-loop" case, the driving torque being the
gravity-gradient torque. The matrix Q is taken to be the
identity matrix, and we have assumed an inertially fixed
attitude - that is, w = 0. That last assumption yields
the fact that the average torque error over the interval
[tk,tk+l], and, therefore, the total error up to any samp-

ling time, is always zero. This fact is borne out in the
actual computations.

Various runs with different values of s and At
were made. One immediate observation is that the resulting
gimbal angle trajectories are extremely insensitive to
changes in the rate mixture s and the sampling interval
At. It is not until s = .99 and beyond that there are
any identifiable changes in the plots of the angles.
Another fact to be observed is that, most of the time,
iterations are not required; that is, Eq. (10) provides
very accurate computation most of the time, using occa-
sional iterations to eliminate accumulated errors. The
required iterations decrease even further with s values
nearing 1, so that computation times, for a fixed At and
for these values of s, become comparable to that of the
first approach. (The computation times for fixed s changes
of course, almost linearly with At.)

Figure 8 compares results for s = .75, and
s = .995 with At = .2 sec. Notice the similarity in re-
results between the s = .75 case and the same case using
the first approach. Notice also that for the case s = .995
the jumps near 4100 sec are smoothed out.

This approach provides, in general, smoother
response for every value of s than the first because of
its increased accuracy. This is at the cost of a slightly
longer program and longer computation time due to occasional
iterations. However, the computation times become compar-
able as s nears 1. Because of the extreme insensitivity
of the results to changes in both At and s, one may obtain
smooth response with a short computation time by using
larger values of s and At.

III. Concluding Remarks

We have presented here a unified treatment of
CMG gimbal angle control in the framework of an optimiza-
tion problem. Two approaches for control have been given,
each with its own relative merits, and some of their prop-
erties discussed. Case studies using quadratic penalty




E e A Laniet o ad e

- 20 -

functions were investigated. These studies demonstrated the
need for including a rate term in the penalty function in
order to achieve smoothly evolving gimbal angle trajectories.

By a proper choice of the penalty function, the
torque-matching approach appears to duplicate the gimbal
angle trajectory obtained using the MSFC law.

IBM, Huntsville, compared these two control laws
with respect to memory requirements and execution time
(Ref. 3). They assumed correctly that the supporting logic
for each law would be about the same. The results of the
assessment are summarized as follows:

Control Law Proper Control Law plus Logic
Memory Memory )
. —— .. Locations Time Locations Time
MSFC Law 755 31.5 ms 1502 68.0 ms
Torque 531 48.3 ms 1278 85.3 ms

Matching

A memory saving of 224 words could be realized.
The execution time, however, would increase 17.3 ms; this
represents an increase in the control law duty cycle from
34.0% to 42.7%. But this duty cycle is based on executing
the CMG control law 5 times per second, a requirement that
could be reduced. Consequently, if the need for additional
memory becomes compelling, the torque matching law should
be considered for replacing the present MSFC law.
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APPENDIX 1

PROPERTIES OF THE MATRIX CQ-IC'

The validity of Egs. (10) and (15) depend on the
non-singularity of the matrices Q, CQ_lC', and (Q+D),

C(Q+D)—lc'. The non-singularity of Q is assumed from the
outset; in fact, we assume Q is positive definite. The
matrix Q+D varies during the Newton iterative process and
not much can be said about it a priori. If Q+D becomes
singular, then the Jacobian matrix M becomes singular,
and Newton's method fails.

We prove here conditions under which co”tc'

becomes singular.

Theorem 1. If Q is p051t1ve definite, then CQ C is non-
singular if and only if C is of rank 3.

Proof: Suppose C is of rank 3. Since Q is positive defi-

nite, so is Ql. Let the row vectors of C be denoted by
Cl, i=1, 2, 3. Suppose, to the contrary, that CQ
is singular. Then there exists a non-zero vector X =

(xl, Xy x3) such that

x'co”lc' = o (Al.1)

Let Y = X'C. Then (Al.1) 1mp11es that Y is

orthogonal to each of the vectors 0 C . Since C is of
rank 3, the row vectors of C and, therefore, the column

vectors of C' are linearly ind?pendent. Q-1 is non-sin-
gular; thus, the vectors Q-J‘Cl are linearly 1ndependent.

Let the space spanned by these vectors, Q 1Cl , be denoted

by S. Then Y ¢£ S.

On the other hand,

-1y _ o7 lc'x = 71 2' 3')
Q Y =20 ( l + x2C x3C

_ -1.1' -1, 2' -1.3"'

= le C + sz + x3Q C

122
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Thus, Q-lY is a linear combination of the Q-lCl and must

be in the space S. Therefore, Y and Q-lY are in comple-
mentary spaces, and we must have

Y'Q'lY =0

But, X is non-zero, C is of rank 3; thus Y' = X'C is also
non-zero. This contradicts the assumption that Q is posi-

tive definite. Thus, if C is of rank 3, CQ”l
singular.

) N
¢ 1is non-

On the other hand, if C is of rank less than 3,
then there exists a non-zero vector X = (xl, Xy x3) such

that C'X = 0. Therefore, CQ 1C'X = 0 and cQ 1c' is singu-
lar. This completes the proof of the theorem.

Theorem 2. If Q is positive definite, CQ-lc' is non-singular
1f and only if the momentum vectors, hi' of the individual
gyros are all colinear.

Proof: From Theorem 1, CQ-lC' is non-singular if and only
if C is of rank 3. C is of rank 3 if and only if 3, and
exactly 3, of its column vectors are linearly independent.
Thus C is of rank less than 3 if and only if all of its
column vectors are co-planar. We shall now derive the
conditions of co-planarity.

Denote by Vi the column vectors of C. Observe

first that V,lV,, V3lV,, VglVo. The planes determined by
Vl and V2, V3 and V4, and V5 and V6 are, respectively:
(x,y,2) . Vl x V2 =0 (Al.2)
(x,y,2) . V3 x V4 =0 (Al.3)
(x,v,2) . V5 x V6 =0 (Al.4)
where

23
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v 2 . 2 .
(V1 x Vz) = cosa,cos Bl’ sine,cos Bl, 51n81cosel)
Vo e ' _ 2. . 2
(V3 x V4) = (51n62cosez, cosa,cos B, Sina,cos 62)
v . 2 . _ 2
(V5 x VG) = (51na3cos 63, 51n83cose3, cosa5Ccos 83).

If all the Vi are co-planar, then the equations (Al.2) -

(Al.4) represent the same plane and are, thus, equivalent
equations. Therefore, the ratios of the coefficients of

X, ¥, and z, pairwise, must be the same in all 3 equations.
This fact yields:

tang, = cosalctna3 (Al.5)
tang, = cosa,ctna, (Al.6)
tang, = cosactna, (Al.7)
tane, = -ctna,ctna,. (Al1.8)

These four equations give the conditions for C being of rank
less than 3, and, therefore, CQ_lC' being singular.

To complete the proof, we need now to relate these
equations to the gyro momentum vectors hi. The hi are co-

linear if and only if hi x hj =0 foris#3j(i,j=1, 2, 3).

h, x h, = (sina,sina,cosB,cosB., + cosa,sinp,cos8,,
r'4 4 r4 ke '1 L i &

1l
sinBlsine2 + cosalsinazcosslcossz,
cos:xlcosazcoselcose2 - 51nalcos3151n62).

Egqs. (Al.5) and (Al.8) yield:

c05azsinel = —sinalsinazcosel (Al.9)

24
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Eg. (Al.6) yields:
sinalsine2 = COsa,CO0sa,Ccos8, (al.10)
These last two equations give
singysing, = -cosa,Sina,cosg,coss, (Al.11)

Egs. (Al.9) - (Al.11), thus, imply that hl x h2 = 0.

In a similar fashion, use of Eqs. (Al.6) - (Al.8)
yields h2 x h3 = 0. This completes the proof.

25
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APPENDIX 2

NEWTON'S METHOD

In this Appendix we give a brief discussion of
the salient features of Newton's Method.

Let F be an n-dimensional vector function of n
variables defined on some domain nc:En. Assume F is contin-
uously differentiable on 2. We seek a vector X, such that

F(X) =0 (A2.1)

Suppose the vector X1 is an approximate solution
to Eq. (A2.l1). We now seek a correction term Ax1 such

that F(xl+Axl)==0. The iterative procedure is one of suc-
cessively obtaining such correction terms, and is based on
the use of the first order Taylor approximation.

0 = F(xt+axy 2 rxt) + m(xl) axt-

Where M is the matrix of the first order partial derivatives
of F evaluated at Xl that is

and is called the Jacobian matrix of F. Thus, if M is non-.

singular, Ax1 can be obtained as

axt = -7 txh) rxh).

Define X2 = xl+Axl; in a similar way, we can obtain

a correction term sz. This process is continued by the
formula

ax3 = -M'l(xj) F(Xj) (A2.2)

2L
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until the sequence converges.

This process is convergent provided that the

initial approximation, Xl, is sufficiently close to the
solution X and the Jacobian matrix M(X) is non-singular.
If M is singular, then the method fails.




APPENDIX 3

SOME STABILITY CONSIDERATIONS

We address the stability question for Eq. (10) only
in the case where Q = I and w = 0 - i.e., when the spacecraft
is in an inertially fixed attitude. The most desirable pro-
perty is to have the angles & tend to a limiting fixed vector

as t»=. What can be proved, however, is that the angles ¢
tend to a limiting magnitude which is no larger than |5N|,

the magnitude of GN. This can be shown thus: for k > N

— — v, - 2_| ] ) )"l 2_
0 < (5k+l-6k) (Ferr~Bx) = =91 & (o) o - T| B
2_| ' -1 -
-(1-s) 5, ck(ckck) c - I|5,

-t — N —t ] ] -1 - _.E,
Sx+1%k = Splke1 = (I-s) Ck(ckck> Cp = T8 * Sydyx

On the other hand,

— — ' — — — —
Se+1%%+1 ~ xSk T (5k+1'5k) (6k+1-5k) = 28y 8 F 28415

|
[
|
0
VN
|
5 -
OI
w -
—~
0
w
0
w -
~—

or,

— —— - —'—
< §,.6

$r+1%%+1 2 %Sk for all k > N

Thus, the sequence {Eigk} is monotone non-increasing;
it is also bounded from below (by zero). Bounded monotone se-
quences have limits; therefore, sésk tend to some constant.
Geometrically, this means that the vectors 8y in six dimension-

al space myst eventually lie on a ball of minimum radius, with

center at s,
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